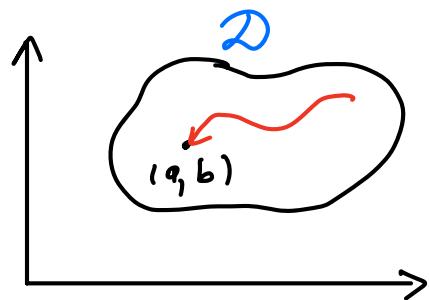


Limits

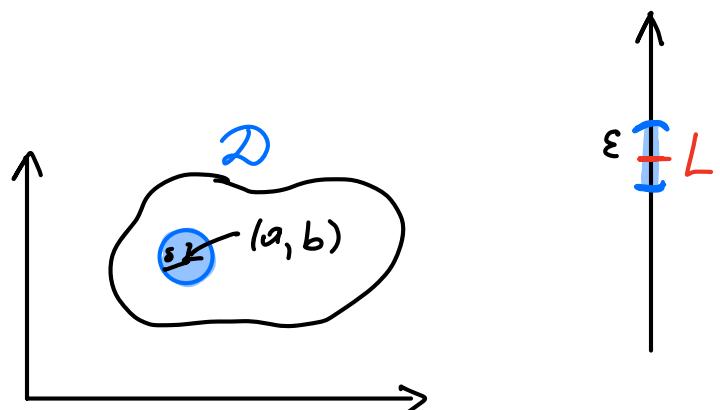
Limits:

$\lim_{(x,y) \rightarrow (a,b)} f(x,y) = L$ - The limit of $f(x,y)$ as (x,y) approaches (a,b)



- if values of $f(x,y)$ approach L as (x,y) approaches (a,b) along any path in the domain \mathcal{D}

- we can make $f(x,y)$ as close to L as we want by taking (x,y) sufficiently close to (a,b)



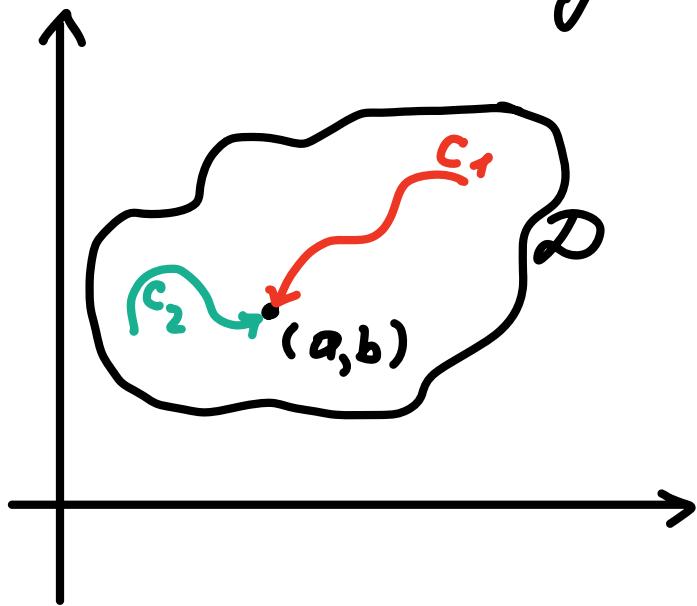
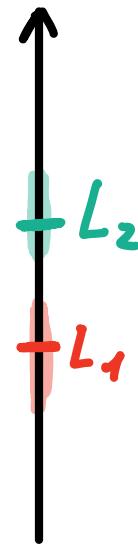
If for every number $\epsilon > 0$ there is a corresponding number $\delta > 0$ s.t. if $(x,y) \in \mathcal{D}$ and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|f(x,y) - L| < \epsilon$

If $f(x,y) \rightarrow L_1$ as $(x,y) \rightarrow (a,b)$ along C_1

AND $f(x,y) \rightarrow L_2$ as $(x,y) \rightarrow (a,b)$ along C_2

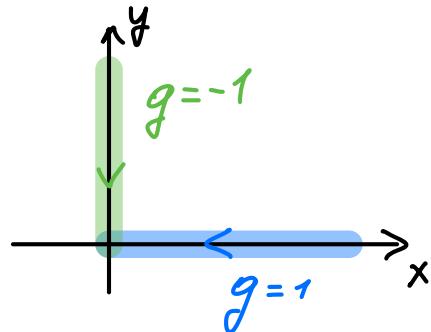
where $L_1 \neq L_2$, then

$\lim_{(x,y) \rightarrow (a,b)} f(x,y)$ does **NOT** exist.



$$\text{Ex: } g(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

Sol:



$$\lim_{(x,y) \rightarrow 0} g(x,y) = ?$$

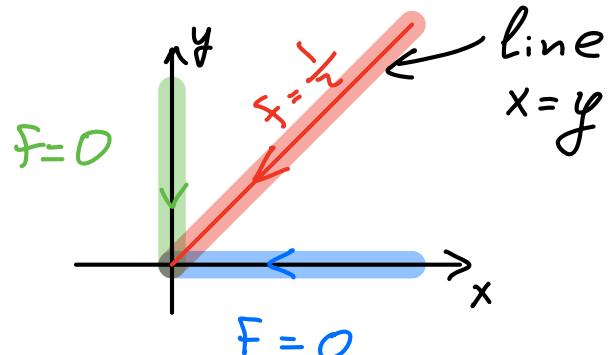
If $y = 0$, we have
 $g(x,0) = \frac{x^2 - 0^2}{x^2 + 0^2} = 1$

approaching along **X-axis** g stays 1

approaching along **y-axis** g stays -1

\Rightarrow limit as $(x,y) \rightarrow (0,0)$ does NOT exist!

$$\text{Ex: } f(x,y) = \frac{xy}{x^2 + y^2}$$



$$\lim_{(x,y) \rightarrow 0} f(x,y) = ?$$

If $x = 0$, we have
 $f(0,y) = 0 = f(0,y)$
 BUT $f(x,x) = \frac{xx}{x^2 + x^2} = \frac{1}{2}$

approaching along **X-axis** f stays 0
 approaching along **y-axis** f stays 0
 BUT approaching along **$x=y$ line** $f = \frac{1}{2}$

$$0 \neq \frac{1}{2}$$

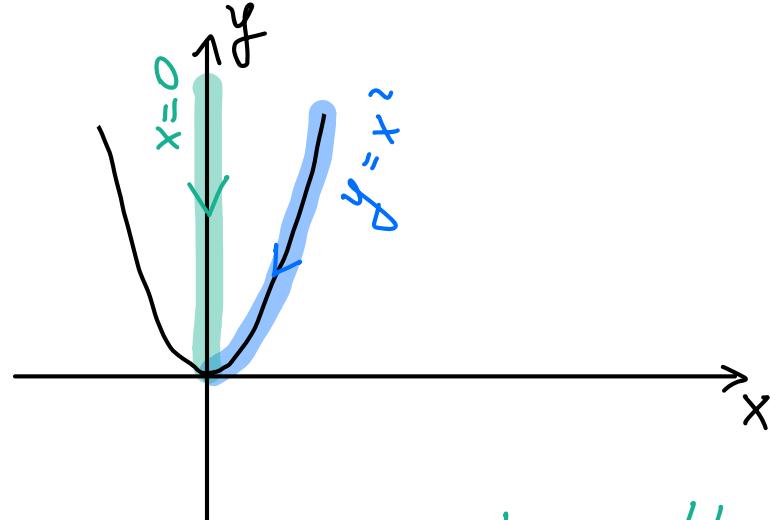
\Rightarrow limit as $(x,y) \rightarrow (0,0)$ does NOT exist!

Ex:

$$f(x, y) = \frac{y}{x^2 + 3y}$$

$$\lim_{(x,y) \rightarrow (0,0)} f(x, y) = ?$$

Sol:



[y -axis is a line $x=0$]

Note that

$$f(0, y) = \frac{y}{0^2 + 3y} = \frac{y}{3y} = \frac{1}{3}$$

For any $y \in (0, +\infty)$ \Rightarrow

Approaching the point $(0,0)$ along y -axis $f = \frac{1}{3}$

Now, let us look at points on the parabola $y = x^2$:

$$f(x, x^2) = \frac{x^2}{x^2 + 3x^2} = \frac{x^2}{4x^2} = \frac{1}{4} \quad \text{for any } x \in (0, +\infty) \Rightarrow$$

Approaching the point $(0,0)$ along $y = x^2$ line f stays $\frac{1}{4}$

$\frac{1}{3} \neq \frac{1}{4} \Rightarrow$ the limit as $(x, y) \rightarrow (0, 0)$ does NOT exist

Ex: Find $\lim_{(x,y) \rightarrow (0,0)} \frac{3x^2y}{x^2+y^2}$ if it exists.

I

Let us look at different lines/curves going through the point $(0,0)$ and see if approaching along them we get the same values or not:

$$x=0: f(0,y) = 0$$

$$y=0: f(x,0) = 0$$

$$y=ax: f(x,ax) = \frac{3x^2(ax)}{x^2+(ax)^2} = \frac{3ax^3}{(a^2+1)x^2} = \frac{3a}{a^2+1} x \xrightarrow[x \rightarrow 0]{} 0$$

$$y=x^2: f(x,x^2) = \frac{3x^2x^2}{x^2+(x^2)^2} = \frac{3x^4}{x^2+x^4} = \frac{3x^2}{1+x^2} \xrightarrow[x \rightarrow 0]{} 0$$

So we suspect now the limit to exist and $= 0$, let us prove it.

Ex: Find $\lim_{(x,y) \rightarrow (0,0)} \frac{3x^2y}{x^2+y^2}$ if it exists.

II

Sol: 1) We suspect the limit is 0.

2) Let $\varepsilon > 0$, WANTED $\delta > 0$ such that

$$\text{if } 0 < \sqrt{x^2+y^2} < \delta \text{ then } \left| \frac{3x^2y}{x^2+y^2} - 0 \right| < \varepsilon$$
$$\left(\Leftrightarrow \frac{3x^2|y|}{x^2+y^2} < \varepsilon \right)$$

3) Note that $x^2 \leq x^2+y^2 \Rightarrow \frac{x^2}{x^2+y^2} \leq 1$ therefore

$$\frac{3x^2|y|}{x^2+y^2} \leq 3|y| = 3\sqrt{y^2} \leq 3\sqrt{x^2+y^2} \leq 3\delta$$

CHOOSE $\delta = \frac{\varepsilon}{3}$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{3x^2y}{x^2+y^2} = 0$$

Solution 2:

III

Note that $0 \leq \left| \frac{3x^2y}{x^2+y^2} \right| = \frac{3x^2|y|}{x^2+y^2}$.

Note also, that $x^2 \leq x^2+y^2$ for any x, y

$$\Rightarrow \frac{x^2}{x^2+y^2} \leq 1$$

Therefore $\frac{3x^2|y|}{x^2+y^2} \leq 3|y|$.

So we get

$$0 \leq \left| \frac{3x^2y}{x^2+y^2} \right| \leq 3|y|.$$

If $h(x, y) \leq f(x, y) \leq g(x, y)$ and $\lim_{(x, y) \rightarrow (a, b)} h(x, y) = \lim_{(x, y) \rightarrow (a, b)} g(x, y) = L$

then $\lim_{(x, y) \rightarrow (a, b)} f(x, y) = L$.

Set $h(x, y) = 0$; $g(x, y) = |y|$. Note that $\lim_{(x, y) \rightarrow (0, 0)} h(x, y) = \lim_{(x, y) \rightarrow (0, 0)} g(x, y) = 0$

$$\Rightarrow \lim_{(x, y) \rightarrow (0, 0)} \left| \frac{3x^2y}{x^2+y^2} \right| = 0 \Rightarrow \lim_{(x, y) \rightarrow (0, 0)} \frac{3x^2y}{x^2+y^2} = 0.$$

Continuity

- $f(x,y)$ is continuous at (a,b) if $\lim_{(x,y) \rightarrow (a,b)} f(x,y) = f(a,b)$
- f is continuous on \mathcal{D} if f is continuous at each point (a,b) in \mathcal{D}

Ex: a polynomial: $f(x,y) = x^2 + xy + y^2$ is cont. on \mathbb{R}^2
 a rational function: $g(x,y) = \frac{x+2y^2}{x^2+y^2}$ is cont. in its domain $\mathbb{R}^2 \setminus \{0,0\}$

Ex: Evaluate $\lim_{(x,y) \rightarrow (1,2)} (x^2y^3 - x^3y^2 + 3x + 2y)$

Sol: $f(x,y) = x^2y^3 - x^3y^2 + 3x + 2y$ is a polynomial \Rightarrow cont. on \mathbb{R}^2
 $\Rightarrow \lim_{(x,y) \rightarrow (1,2)} f(x,y) = f(1,2) = 1^2 \cdot 2^3 - 1^3 \cdot 2^2 + 3(1) + 2(2) = 11$

Ex: Where is $f(x,y) = \frac{x^2-y^2}{x^2+y^2}$ continuous?

Sol: Discontinuous at $(0,0)$ [NOT defined there]

Rational fct. is continuous on its domain $\mathcal{D} = \{(x,y) \mid (x,y) \neq (0,0)\}$